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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

1541-TR 3
1541-TR 4
1541-TR 5

1541-TR 6

1541-TR 7
1541-TR 8
1541-TR 9

1541-TR 10

1541-TR 11

1541-TR 12
1541-TR 13
1541-TR 1k
1541-TR 15

1541-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of Iinear
Recurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation bf a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of a Linear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of Linear Systems with
Linear Controllers

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle )

A Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts

and objectively discusses the significance of the results obtained.

The

results of inconclusive and/or unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate for sections 6, 8, and 16.

/
It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for & plant whose representation
contains derivatives of the control variable yields a correct result.
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In section 3 it is shown that the problem of controlling m components
(1 <m< n), of the state vector for an n-th order linear constant coefficient
plant, to zero in finite time can be reformulated as a problem of controlling
a single component.

Section 4 shows Pontriagir's Maximum Principle is often a sufficient
condition for optimal control of linear plants.

Section 5 develops an algorithm for compating the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section 7.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solutiun is reduced to linear programming.

A backing-~out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

Section 10 presents a reformulation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 1l.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example.

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.
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LINEAR PROGRAMMING
AND
BOUNDED PHASE COORDINATE CONTROL

+

by D. L. Russell

7_38{1 ABSTRACT

A maximum principle for time-optimal bounded-phase coordinate
control of ordinary linear differential equation systems and
an existence theorem are proven. Plant differential equations
are then approximated by recurrence equationé so the problem
of obtaining "optimal" trajectories by backing out of the origin
can be reduced to one of linear programming.ahjé;b

INTRODUCTION

The plant considered is represented by the vector differential

equation
x = A(t)x + B(t)u + £(t) (1)
where x and u are n-and m-vectors, respectively; A(t) and B(t)
are continuous n x n and n x m matrices; and £(t) is an n-vector.
The vector x is called the phase variable; u the control variable.
It is assumed that f(t) is measurable on some interval I and
bounded on every compact subinterval of I; that u(t) is measurable
on various subintervals t, £t S_tl in I (which are the domains
of definition of the u's); and that u(t) lies in a non-empty,
“Prepared under contract NASW-563 for the NASA.

i Research Consultant, Minneapolis-Honeywell Regulator Company,
Minneapolis, Minnesota
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compact, convex restraint set Qc R™ which contains more than
one point. Trajectories corresponding to u(t) are denoted by x(t).

G is a closed, convex, non-empty subset of R®. The initial
point x(to) =X, € G. T is a closed, non-empty target set and
Tc@G. It is assumed X, g T. A is the set of all control functions
u such that x(to) = x, and x(tl) € T and x(t) ¢ G for t, Lt <t
The objective 1s to determine a control function u*(t) e A
defined on [tg, ti] such that t{ -'tg S_tl - to for every other
u € A,

The method developed herein permits trajectories to be
determined by backing out of the origin. The plant differential
equations (1) are approximated by recurrence equations. The
control varliables are constant over sample intervals and the phase
bounds are only enforced at the endpoints of these intervals. The
trajectories thus determined are approximations to the desired
optimal trajectories.

Theorem 1 below shows that optimal trajectorlies are extremal
in the sense of Definition 1. Then the objectives for exlstence
of extremal trajectories is established.\ The plant differential
equations are replaced by recurrence equations and the problem
solution is reduced to one of linear programming.

THE MAXIMUM PRINCIPLE

The maximum principle is a statement that controls that
displace the plant (equation 1) the maximum distance in a given
direction from an initial point during a fixed time interval are

necessarily extremal controls; the extremal controls belng de-



fined beforehand.

It is first assumed the initial time, to, is fixed for all
controls, u. The set of attainability, K(t,xo)}is then
defined as the set of x(t) corresponding to controllers u(r)
defined on t, < T < t with u(7) e Q and such that'x(t) € @
for t & 7 < t. K(t,x;) 1s closed, bounded, convex, and varies
continuously with ¢t. |

It is clear that the smallest number t, with K(tl,xo) NT # ¢

1l
is the minimal time required to bring X, into T. Each optimal
control u*(t) has the property that x(t{)'lies on the boundary
of K(ti,xo).
The adjoint system for the system (1) is
¥/ = -y7 Alt) (2)

where w’ indicates the transpose of ¥.

DEFINITION 1. A control u*(t) defined on [to,ti] and lying in

Q with x(t) lying in G on [to,t{] is called extremal if there

exists a solution ¥’ of (2) defined on [to,til such that

ti / ti /
J =¥ (s) B(s) u*(s)as > [~ ¢"(s) B(s) u(s)as
%o %o

for all other u(t) lying in Q with x(t) lying in G on [to,t*i].
THEOREM 1, If the response x*(t) to the control u*(t) defined on

[to,ﬁi] is such that x#(ti) € 9 K(ti,xo), then the controller
ug(t) is extremal.

PROOF: The assumptions that G and { are convex implies that
K(t{, xo) is convex. Thus K(t{, xo) may be supported by a plane

m at x*(t%). ¢, is taken as tke unit outward normal vector to m.
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Then 1t is clear by convexity of K(tf,xo) that for every point
Q e K(t¥%,x,),

yix*(£2) > ¥iQ (3)
From (1) o
x* (%) = o(t4)x, + o(t1) ! 1 ol(s)(B(s)u*(s) + £(s)lds  (4)
. i o :

where ®(t) is the fundamental solution matrix of the homogeneous
equation corresponding to (1) with &(t ) = I. ¥7(t) 1s taken
as the solution of (2) such that w’(ti) = w{. Then (3) is re-

written

v (ey) x*(e%) = 97 (tg) o(t8)x, +

w'(tﬁ)*Q(t{) ft1¢(8)'1[3(8)u*(8) + f(s)lds >
to ti (3)
y/(t2) o(t8)x, + ¢7(t1) o(tx) { ¢(s)"1[B(s)u(s) + £(s)]ds
| 1
for all other controllers u(t) defined on [to,t§] such that
u(t) lies in £ and x(t) 1lies in G.

By writing ¢/(t) = ¢é¢(t)'l for an appropriate w;, it is

found that
5 i
[ ¥'(s) B(s) u*(s)ds > [ ¥’(s) B(s) u(s)ds (6)
to to

which completes the proof.
It is noted that in this case it may not in general be con-

cluded that ¢”/(s) B(s) u*(s) > ¥'(s) B(s) u(s) for almost all

S € [to’ti]° This is possible in the case where G = R™.
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BACKING OUT OF THE ORIGIN

If families of optimal trajectories could be obtained, it
would be expected the optimal control could be synthesized.

If the expressions for the optimal trajectories were simple
enough, explicit expressions for the controls could be developed.
Otherwise the trajectory data could be calculated and placed

in a storage computer.

The backing out of the origin procedure consists of
determining optimal trajectories for the system (1) by starting
with zero initial conditions and figuratively running the system
backwards. It is assumed the target T is the origin, the con-
straint set @ is a polyhedron in R@,and the system (1) is
autonomous ;3 that is, A, B, and f are constant.

Basically the method may be described as follows.
¥? is taken as a solution of (2) defined on [to,tll. Then
u*(t) is found on [to,tl] so that

t t
J Y 9’(s) Bur(s)as > [ ‘y’(s) Bu(s)ds,u*(t) and u(t)
tO tO

lying in Q and subject to the condition that the solution of
(1) with x(t;) = O lies always in @ on [t,,t;].

If it can be shown that u*(t) uniquely maximizes
tl
f w’(s)Bu(s)ds then the response x(t) must be optimal carrying
o
x(t ) into the origin at time t,. Each such v’/ thus determines

an optimal response x(t). &

: 1
A method for maximizing [ ¥/ (s)Bu(s)ds to any desired
t P ,
o
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degree of accuracy, while fulfilling both the constraints on
the control u(t) and the phase variable x(t) is presented below.

t
The existence of a W{t) maximizing [ 1 ¥/(8)Bu(s)ds and
%
fulfilling the constraint requirements on u(t) and x(t) is

established first.

. EXISTENCE OF A MAXIMIZING u*(t)
¥ (t) is taken on the finite interval [tO,tll as a solution
of (2). For a given u(t) defined, measurable, and bounded on
the same interval, the response x(t) with x(tl) = 0 is given

by the variation of parameters formula.

x(t) = {t e A(8-t) 15 (8) + f£las (7)
1 | |

where it is noted that ¢t £ ¢,
This leads to the following theorem:

THEOREM 2. Let ®(s) be an m-dimensional vector in L2[0,T]. Then
there exists an m-dimensional vector u*(s) ¢ L2[0,T] such th?t
1. u*(s) belongs to the class F of m-vector functions u(s)
in L2[0,T] for which
(a) Uy g S‘uJ(s) S‘ulJ uniformly on [O,T].
(b) For a matrix B(e), measurable and bounded on [0,T]
of dimensions n x m and a measurable, bounded n-vector

f(s) defined on [O,T]’
x(s) = {: [B(0)a(o) + £(o) ]do (8)

satisfies x(s) ¢ G, s € [0,T], where @ is8 a closed convex sub-

set of R™ such that O € G.
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T | T
2. é ¢’(s) u*(s)ds > é ¢/ (s)u(s)ds for all other u(t) € F.

SKETCH OF PROOF: The following properties of the set F& L2[0,T]
may be easily verified:

(a) F is bounded.

(b) F is closed,

(c) F is convex.

T
Now set L(u) = J ¢’(s)u(s)ds. Then L is a linear functional
0

on L2[0,T]. It will now be shown that L is bounded and hence

continuous. For, using the Schwartz inequality

T
IL(u)| =|f ® (s)uls)as| ¢
. . 0 '

T T
\/é 1e(s)1? ds-‘\/{) fu(s)]2ds = @] [lul

Here [®(s)],lu(s)] denote the norms of ®(s8), u(s) at a given s

(9)

as elements of a finite dimensional Euclidean space whereas

i¢ll, llull are the norms of these vector functions as elements

of L2 [0,T]. Since ||¢]] is finite by hypothesis, the result
that L is a bounded linear functional has been obtained.

Since Jjul| is bounded in F, L(u) is bounded above in F.
Since L(u) is bounded above it must have a least upper bound M.
Let uy i=1,2,... be a sequence of functions in F such that
lim L(ui) = M.
i—>o0

Now a closed, bounded sphere in L2 [0,t] is weakly compact.
Hence there is a subsequence of the u;, say uy , and an element
u* ¢ L2[0,T] such that 1im[4(ui ) = L(u*). Hence L(u*) = M,

k->00 "k ) ,
This may be concluded because F is bounded. F is not itself
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necessarily a sphere in L2[0,T], but it is contalned in a closed
bounded sphere of L2[0,T]. Thus u* exists but it is not known
yet that it lies in F. To show that u* does lie in F the reader
is referred to page 422 of reference 2 where the following theorem
is stated and indications of the proof are given:

"A convex subset of a locally convex lingar topological
space is }f* closed (i.e., closed in the weak topology) if and
only if it is closed . (i.e., closed in the usual topology.)
Since L? [0,T] is a locally convex linear topological space
it may be concluded that u* € F. Hence L(u*) = M and hence by
definition of M

£T¢’(s)u*(s)ds > £T¢'(s)u(s)ds - (19

for any u € F. Q.E.D.
Thus the proof of the existence of the maximizing
u* has been obtained. It is reasonable to suspect that u*

18 unique for almost all ¢ in some sense.

A METHOD FOR APPROXIMATING u* FOR A GIVEN ¢
Attention is again restricted to autonomous systems.

It is now supposed that G is a convex polyhedron given by

vé-xgcl,k 1,2,00., L, (11)
the Yé being n dimensional vectors. It 1s required that the

restraint set ) be given by

uoi < u < uli’ i= 1,2,ooo,mo . (12)
A function ¥’ is given on [to,t ] with some final
conditions on y”~ (tl), as a solution of (2).
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The approximation method basically consists of the
assumption that u is constant on the intervals to =T, £71X< Ty
T s_t { Toseee T 1 £ T< T, =t,, where Ty~ Ty1 = xJ. of

v

course I AJ = tl-to. Then it is seen that, if uJ is the value
J=1 |
“of u(s) on Ty £ T < Ty,
tl v M T /
[ ¥ (s)Bu(s)ds = Z |/ ¢'(s)B -uy|=T,.T, (13)
to = TJ_l

(U consists of treating the v vectors uJ, each of n components,
as one vm dimensional vector. Pw is similarly defined.)

Now the response to this control u 1s given by
t
x(t) = - [ Le=A(®8-t)[py(s) + £lds (14)
t

It is desired that this response should not leave the region G.
Instead of imposing this condition at every t it is imposed, for
ease of computation, at each of the times TJ,Tl,...TV_lo It

is automatically satisfied at T, = tl. For each TJ’ J = 0,1,2,400,v-1,

i
!

=t

X(TJ) fTv le'A(B-t)[Bu(S) + flds
T

J

T
5 C eh(et) [py(s) + rlas
k=J+1 Ty

i
L

T
v k

Tv‘-'—‘T

)
T3

) By, + rlas (15)

T

1 v k

e~A(e-t)p 4o = 3 (f e"A(s't)Bds ‘u
k=3+1 \7,_,

it
'

k

v

d, + 2 D_u _, the last equality serving to define
J . k=ge1 kK

i
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d,and D, k= J+l,...,v. The condition that x(rJ) be in G is

J k

then

v
vﬂ.(dJ + h§+lnkuk) _<_ C s [= 1,2’..0,1! (16)
(refer to (11)). This imposes linear restraints on the

., k= J+l,.0.,v. In addition

Ugy £ Wy £ Uyys (17)
denoting the component of u, in question, for each k.
Performing (15) for each J, J = O,l,..;,v-l it is seen
(16) and (17) describe v(2ntL) linear constraints upon the
vector U having vn components.
Thus there 1s a fixed vector PW and a variable vector U,
The problem now is to maximize PW'U’ keeping U subjJect to the
constraints defined by (16) and (17).
This problem may be succinctly stated as:
Maximize P@-U, subject to AU { B, where A is a matrix with
dimensions v(2n+L), vn and B is a vector of dimension v(én+L),
the inequality being understood to hold between all components
of the vectors involved. This is called the General Maximization
Problem of Linear Programming. Thus any further effort in this
approach must be directed toward finding the best way to solve
thils linear programming problem. it 1s observed that the matrix -
whose entries are
v 5 Dw ., £=1,2,...,L, and J = 0,1,...,v-1 has
k=J+1 _

a certain "block triangular" character. This could conceivably
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simplify the linear programming.

It is also noted that the constraints on U are independent
of the cholce of ¥ so that the constraint set is fixed once and
for all. Because a large number of ¥ will undoubtedly be used,
attention should be directed to the possibility that the Ul
selected for one wl could be used as an initial guess in some
sort of an iteration process for finding Ué corresponding to

a wa whose initial conditions were near those of wl.

CONCLUSIONS
A modified form of the maximum principle is seen to lead
to a formally correct "backing out" procedure. The effectiveness

of this procedure rests on linear programming.
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